在移动设备上部署机器学习模型已引起越来越多的关注。为了解决设备上硬件资源的局限性解决模型概括问题,设备模型需要通过诸如云模型的模型压缩等技术轻量级。但是,改善设备模型概括的主要障碍是云数据和设备模型数据之间的分布变化,因为设备模型上的数据分布通常会随着时间而变化(例如,用户在建议系统中可能具有不同的偏好)。尽管实时微调和蒸馏方法考虑到了这种情况,但这些方法需要进行设备训练,由于计算能力较低和设备上缺乏实时标记样品,因此实际上是不可行的。在本文中,我们提出了一个名为Metanetwork的新型任务无关框架,用于从云中生成自适应设备模型参数,而无需进行设备训练。具体而言,我们的元网络部署在云上,由元培养剂和转移器模块组成。 Metagenerator旨在学习从样本到模型参数的映射函数,并且可以根据从设备上传到云的样本生成和传递自适应参数到设备。转移剂旨在减少元烯剂的振荡,加速收敛并在训练和推理过程中提高模型性能。我们使用三个数据集评估了两个任务的方法。广泛的实验表明,元网可以以不同的方式实现竞争性能。
translated by 谷歌翻译
在信息爆炸的时代,推荐系统通过促进内容探索在人们的日常生活中起着重要作用。众所周知,用户的活动性,即行为数量,倾向于遵循长尾分布,大多数用户的积极性低。在实践中,我们观察到,在联合培训后,尾巴用户的质量推荐率明显低于首席用户。我们进一步确定,由于数据有限,因此在尾巴用户上训练的模型仍然取得了较低的结果。尽管长尾分布在推荐系统中无处不在,但在研究和行业中,提高尾巴用户的推荐性能仍然仍然是挑战。直接应用长尾分配的相关方法可能有可能伤害首席用户的经验,这是不起作用的,因为一小部分具有高积极性的首席用户贡献了平台收入的一部分。在本文中,我们提出了一种新颖的方法,可以显着提高尾巴用户的建议性能,同时至少在基本模型上为首席用户提供至少可比的性能。这种方法的本质是一种新颖的梯度聚合技术,该技术将所有用户共享的常识知识分为主干模型,然后为Head用户和Tail用户个性化提供单独的插件预测网络。至于常识学习,我们利用因果关系理论的向后调整来消除梯度估计,从而掩盖了混杂因素的骨干训练,即用户的积极性。我们对两个公共建议基准数据集和一个从支撑台平台收集的大规模工业数据集进行了广泛的实验。实证研究验证了我们方法的合理性和有效性。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
A crucial issue of current text generation models is that they often uncontrollably generate factually inconsistent text with respective of their inputs. Limited by the lack of annotated data, existing works in evaluating factual consistency directly transfer the reasoning ability of models trained on other data-rich upstream tasks like question answering (QA) and natural language inference (NLI) without any further adaptation. As a result, they perform poorly on the real generated text and are biased heavily by their single-source upstream tasks. To alleviate this problem, we propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck. WeCheck first utilizes a generative model to accurately label a real generated sample by aggregating its weak labels, which are inferred from multiple resources. Then, we train the target metric model with the weak supervision while taking noises into consideration. Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4\% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.
translated by 谷歌翻译
Answering complex logical queries on incomplete knowledge graphs is a challenging task, and has been widely studied. Embedding-based methods require training on complex queries, and cannot generalize well to out-of-distribution query structures. Recent work frames this task as an end-to-end optimization problem, and it only requires a pretrained link predictor. However, due to the exponentially large combinatorial search space, the optimal solution can only be approximated, limiting the final accuracy. In this work, we propose QTO (Query Tree Optimization) that can efficiently find the exact optimal solution. QTO finds the optimal solution by a forward-backward propagation on the tree-like computation graph, i.e., query tree. In particular, QTO utilizes the independence encoded in the query tree to reduce the search space, where only local computations are involved during the optimization procedure. Experiments on 3 datasets show that QTO obtains state-of-the-art performance on complex query answering, outperforming previous best results by an average of 22%. Moreover, QTO can interpret the intermediate solutions for each of the one-hop atoms in the query with over 90% accuracy.
translated by 谷歌翻译
Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译